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process has a finite variance but an infinite fourth moment. Furthermore,

in the infinite variance case (0 < 4 < 2), the sample correlation function is

shown to converge in distribution to the ratio of two independent stable random

variables with indices a and a/2, respectively. This result immediately gives

the limit distribution for the least squares estimates of the parameters in an

autoregressive process.
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Limit Theory for the Sample Covariance and Correlation

Functions of Moving Averages

By

Richard Davis* and Sidney Resnick**

Colorado State University

Let X= c Z be a moving average process[where/the Zt's are iid

and have regularly varying tail probabilities with index 0. The limit

distribution of the sample covariance function is derived in the case that the

process has a finite variance but an infinite fourth moment. Furthermore,

in the infinite variance case (0 < < 2), the sample correlation function is

shown to converge in distribution to the ratio of two independent stable random

variables with indices % and /2, respectively. This result immediately gives

the limit distribution for the least squares estimates of the parameters in an

autoregressive process.
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(1.3) was given by Kanter and Sceiger (1974) and Hannan and Kanter (1977). They

proved that for any 6 > a,

n 6 (p (h) - p(h)) P. 0

with a similar result holding for the least squares estimates of the parameters

in the AR(p) model. Yohai and Maronna (1977) also considered AR(p) processes and

1/2^showed that n (p(h) - p(h)) is bounded in probability provided the Zt's are

symmetrically distributed and E log+ IZti < -. Of course if the Zt'a have a finite

variance then n/ 2 (p(h) - p(h)) is asymptotically normal under mild restrictions

on the coefficients {cj} (cf. Anderson, 1971, p. 489).

In Section 2, the limit distribution of the sample covariance function is

derived for the case 2 < a < 4. In the special case, 2 < a < 4, the process has

a finite variance but an infinite fourth moment. It turns out that, as in the

0 < a < 2 case, the limit behavior of the sample covariance function is determined
n

by the partial sums I Z2 . We also consider in Section 2 the situation when Z2

t-1 t t

belongs to the normal domain of attraction with an inafinite variance.

The weak limit of the sample correlation function in the infinite variance

case (0 < a < 2) is considered in Section 4. It is shown that there exists a

slowly varying function at -, 1), such that nl/a(n) (p (h) - p (h)) converges in

distribution to the ratio of two independent stable random variables with indices a

and a/2 respectively. Whereas the asymptotic properties of the sample covariance
n

function are governed by the partial sums t Z2 , the weak limit behavior of the
t1 n

sample correlation function is determined by the vector of partial sums ( Z2

n n tul

t tzt+ ,  "'" Zt Zt+h). In Section 3, we show that this sequence oft-l t tl
vector-valued random variables converges in distribution to a vector of independent

non-normal stable random variables. This result is proved using point process

techniques and ideas from extreme value theory.

A discussion of least squares estimates for AR(p) processes in this setting
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and some examples are presented in Section 5.

2. Sample covariance function

The aim of this section is to derive the weak limit of the sample covariance

function for the process {X t  satisfying (1.1) with 2 < a < 4. Assume

(2.1) xt - cj i with I !cI <j -- z -..

where the Zt satisfies (1.2) and (1.3). Put a - inf{x: P(IZII > x) > n- } and

define the sample covariance function by

y(h) - I n Xt Xt+h, h > 0.
tMin

The following proposition is the key step in evaluating the weak limit behavior

of y(h).

Proposition 2.1. If 2 < a < 4 and E Zt 0 0, then for every positive integer h,

(22- 2  n 0.
(2.2) a-2(ny(h) - I c1 ci Z2_ .

n t- i -a ti

Proof. We have

n

a X2 I - t-l ci ci+l Z2_i)t.--

U a 2 ( n ci cJh Z- ZtJ)

n

- a n t~l 3i C C4 ~h(Z t- [ 1 tjz I  <_ a] -~ ( Ztrz < _a a-2  n I c

n t i i J+h t-i n t-J - n

n

+a211 nc c(Z 1 1
a-2 n I 'i J+h t-i [Iz _ • a o- I I a

n tl i Jl n Zt-j an]

-2 V2 c
n n  Za Jao

A + l B -+ Cj+ D
=A+B+C+D
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rI

where n E Z1  I1z < an We shall show that A, B, C . 0 and D. 0.

A Define

ztn  zit 1[IZti an -Un

and we have

Var(A)-ta s 1 7 1 CiCj+h kL+h,n t-jn s-k,n Z-,n

Since {Zt  -W < t < 01 is for each n an iid sequence of zero mean random variables,
tice ,n,

the above expectation is zerounless {t-i, t-J) - {s-k, s-ti. When this is the case,

the expectation is of the form

E Z2  Z2  E Z2  E Z2
l,n 2,n l,n 2,n

<(Z21)2 . 04
( E Z Z1 1 a an  n

where a 2 . E Z2 1 Hence

nn I n I-

Var() <4 -4 

a a n

n n ( + Ici +hlcs-t+llcs-t+c+h

n

Va.~ ying bK ara -t' s here (Fle,1971). Soi+ ihrcs ssol

-<°n n l .41I ist> 1Ic ci+h+s-tl)(Il cj+h cj+,_tl)
s-l t-1 i

<o0 a-4 n I (( c 12 + I ) 1 c1 )

vynn o a Is li i+t i i  i+h+t ich t J+ h ct+jh) h

< 2( Cili) n a-4 0V

i n n

For 2< a <4, 02 has a finite limit and in the a- 2 case it Is slowlyn
vs-ying by Karamata's Theorem (Feller, 1971). So in either case a isowy"

varying. Moreover, a n is regularly varying with index 1/a which together with the

slow variation of a4 implies n a4 a4 0 as n + .Thus, Var(A) 0 as desired.
n n n
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As for the term B, we have

El BI _: 2 n a- 2 IinI( Ic-,) 2 EZz rlzI <
_ n nl 1L5 1 J -li

< 2(1 lc1)2E 1ZI n a-2 1n1.

Since E zt  0 by assumption, lunI - IE Z 1f, • 1 < ElZ 1 , "C -n a /n
n 1 0JZ1 > a 1> a n. n

by Karamata's Theorem. Hence n a-2

Next

EICI _ n a-2 (I Ic 1 )2E1Z1 z2J 1z1J > aor 1z2! > a)

< 2 n a 2 (j jci) 2 EZ 2 I EIZIIIzI >
n i n'

+0

by Karamata's Theorem as for B. Finally, D - 0(n an2 V2) + 0 since for B we have

already proved n an itiI 0 and this completes the proof. ..

For a > 2, define

y(h) Cov(Xt, Xt+h)

i 4-
-(X cj.j~) •o

where 02 - Var(Z t ). The next theorem gives the main result of this section.

Here and in what follows, convergence in distribution is denoted by ".".

Theorem 2.2. Suppose fX t is given by (2.1) where {Zt I satisfies (1.2) and (1.3)

with 2 < a < 4. If E Zt - 0, then for any positive integer Z
t

(2.3) (n a-2 (;(h - b_,0<h<9 * S* LC2, C ....
n h,n cJ cjJ1 tj ~j-

where S is a stable random variable with index as/2 and bhn " Ci c E+h~z2 IZz<a]'

0 < h < Z. Moreover, if 2 < a < 4, then

(24 ( 2  
_ a ~ )(()(2.4) (n- (y(h) - y(h)), 0 < h < t) * (S -

..
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Proof. By Theorem 4.1 in Davis and Resnick (1984),

a72i L c (Z2-~ 02 c Ch S for all h>O0
n cli. i-Ih t- i-aa. i~tal •mf m.

where 02 = E Z2  [l1 :S n, and S is a stable random variable with index a/2.

From the proof of this same theorem, we have for any positive integer I

n n n

n a 2 Ez 1Eiz t > a] so that by the convergnce of tes result, (2.4)

holds. f
Corollary. The same limit law is attained in Theorem 2.2 if y(h) is replaced by

a mean corrected version

-1

The proof of this corollary is analogous to that of the corollary following

Theorem 4.2 in Davis and Resnbck (1984) and is therefore omitted. Also note that

the corollary remains true if E Z 0 by considering the process X - E X

S cj(zt~ -E Z )"
-- jz-i t-j

Corresponding to the case - 4 we have the following result.

Proposition 2.3. Suppose {Xt } is defined by (2.1) with E Zt - 0 and

z 1ml t L(t) X

is slowly varying with lim L(t) - . Define th by
s 21

E Z1
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Wea1/2

n

1/2
so that an is regularly varying with index 1/2. If a n  then in

a7(2.5) (n 2 Y(h) - y(h)), 0 < h <9) ,,N - (y(O), ... , y(h))/a 2

where N is a N(O, 1) random variable.

Remarks. (1) Define L1 (x) - L(xl/2 ) so that L1 is also slowly varying (de Haan,

1970, p. 21). Then a must satisfy n L (a)/t 2 1. Set Ul(x) - x 2 /Ll(x) so

that U1 is regularly varying with index 2 and a satisfies Ul(an) O n and this

shows a n may be taken as the asymptotic inverse of U1 at the point n(cf. Seneta,

1976, p. 21).

(2) For the classical result assuming E Z4 < - see Anderson, 1971, p. 478.
1

Proof. We begin by showing the analogue of Proposition 2.1. The difference

-2 c)Z 2 )a n( y(h) ( i (ct-l i-- i

is again decomposed into the pieces A + B + C + D.

We have Var(A) = O(n a 4). Since L(t) * m we have a /rn and hence
n n

-4 -2
na rn Q " 0

n n

as desired. For B we have

E JBI< (coast) n an E Jz1  1 "

Since L(t) "t Z4 P[IZ1I e dz] we have

1 , Z p[IZl[ c dz] t - 3 L(dt)
Sa n n

S3a L(s)s - 4 ds - L(an)a-3
n

-3 L(.:){ 3(L(a s)/L(a ))s-4 ds - 1) S-%1



so that

naJI 1EIZl1 >aU n 5(an)a5 3(L(a n s)/L( ))s 4ds - 1.

-4
However, since n L(a )a - 1, the above term is asymptotic to

n n

a-1 l' 3(L(a a)/L(a ))s-4 da l

which goes to zero since a n and the expression within the braces goes to zero by

Karamata's Theorem. The term EjCJ is handled in the same way and D is of smaller

order than EIBI so the analogue of Proposition 2.1 is proved. fl
Before continuing with the proof we need the following result.

Proposition 2.4. Suppose (X t  satisfies (2.1) with E Z- 0 and U(t) - E Z2  1
t~ ~ I [ 111

slowly varying. Define gn by

2 g 2 E Z2 11.
n I CIZ 11-- 9n

Then

Y,~ V, I c )Nn It
t=1

where N is N(0, 1).

Proof. A proof can be fashioned after the method used in Davis and Resnilck (1984)

to prove Theorem 4.1. We have Z1 in the domain of attraction of the normal so

that g' Zi * N. Furthermore for m > 1

n
1
t! Zg 1J <~ m) -*(N, N, .. ,N)

2m+l
nm lR and therefore by the continuous mapping theorem

(c-e ... cM) " Zn C _ 1 )N.

It remains to show

n

(2.6) lir limsup P~lg- 1 Xt - (Cm, ... , cm) •n > ] 0

m- n+ t.
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for any 6 > 0 as well as

(2.7) (1 c )N ( c )N, m "

Iinm

The validity of (2.7) is obvious.

We have that

nt( n
gn I Xt -cm' "'cm) ° n = gn c i Zt-J

nnltw=l i i >m cj(t-J [zt-JI  U n I lIl _ gn]

" g-l n( C c)E Z1 I[[1 n

"gnI tc~~> c)Zt-i 1 1t~j > gn

Now P

lum limsup P[IMI > 6] - 0
m- nr

by an argument identical to one used in the proof of Theorem 4.1 of Davis and

Resnick (1984). (We use the fact that n -2 E Z2  < g .) For the

1 £Z11 < n . . o h

other two terms we calculate

JE Z1 1[Iz1! <1 gn] I - JE ZI '[ZI[ > gn] I

.E iz t =1 t e: dt] = t-U(dt)
1 g IZ >g =i'i

1n n

s-2 U(s)ds - g-l U(g)gn

and so applying Karamata's Theorem (recall U is slowly varying) we get
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g n EZ 1 I Z I gn 1
U(g) -0.

Thus

< U(gn) g JE ZE lZIZI ' g_ c !'ni IIIl

2  U(g) I

gn IEZ, z1 m[1Zl I_ .l~ > I j/u(g n

-0 as n 
< no

Likewise

linm limsup P[IJy > a] < lim limsup 6 1 -1 n 5 Z 1  1 Ic I

=0

as desired for the verification of (2.6).

Continuation of the proof of Proposition 2.3: From Proposition 2.4 we have

(recall 02 = E Z2 - Var(Z

-I c (Z2 . a2 )  c )Nn Ct I i+h t-i c )N-i i --W iW--OD

and hence from the analogue of Proposition 2.1

-2 (in a (y(h) - y(h)) ( ci+h )N. 6na

The assertion of Proposition 2.3 easily follows.
A

Remark. The same limit law holds if y(h) is replaced by the mean corrected version.

h) =I (X~ - x)( X)
n t+h

LO

p
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3. Sample covariance function of {Zt}

Assume {Zt I is iid and satisfies (1.2) and (1.3) with 0 < < < 2. As before,

define

(3.1) a - inf{x: POZI1 > x) > n- 1 .

Applying Theorem 4.2 in Davis and Resnick (1984) to the Zt sequence (i.e., take

cj 0, J 0 0 and c 0 1), we obtain

-2 n
an Zt Zt+h S - 0 - 0 for all h > 0Sn ti 1tt~

and
2  z2 .s
a-t 1 Z2.

n t

where S is a positive stable random variable with index a/2 . In this section,
n

we give a different normalization for the partial sums I Zt Zt+h, h > 0 int-l

order to get a non-degenerate weak limit. Not surprisingly, these partial sums

(i.e. sample covariances) at different lags turn out to be asymptotically in-

dependent. This will be the main building block for deriving the limit distribution

of the sample correlation function of the Xt process in the next section.

Throughout this section we shall assume E j.Z1 It then follows from

Theorem 3.3 (iv) in Cline (1983), that the product Z0 Z1 belongs to the a-domain

of attraction. That is Z0 Z1 satisfies

(3.2) P(IZ0 ZI" > t) 
-  as t- , x > 0

and

P(Z0 ZI > t)(3.3) -_. 4 p+ (1-r), As t-+

where p ti given in (1.1.
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(3.4) a n inf{x: P(JZ 0 Z 1  > x) > n- .

We first show that

(3.5) aV /a -,.
an a

Observe that for a fixed positive number M,

PC(Z o z1 1 > t) P(jZ 0 > t/IZ11, jZ1J .M)

P(iZOl > t) >- P(Z 01 t)

M P(1Z0 > t/y) c
0 P(IzOI > t) P(1Z11 £ dy) .

We then have by Fatou's Lemma and (1.2)

P(Z 0 z > t) M
liminf P-T27, > t) 1-0 y' p(1zl 1 E dy) S

and upon letting M- 0, the lower bound converges to EIZ1Ia 1 1 . It now is easy

to check that (3.5) must hold. n n

The joint asymptotic behavior of the partial sums ( 2. Z Z
n tul t'1

t Z Zt+h) is handled using point process techniques. 
For background on

point processes, see Kallenberg (1976). Set Yt - (Zt, Zt Zt+l' ... , Zt Zt+h)

fot 0,±12-1 ( -1 -N- Z 1
for t - 0, ±1, _2, ... and define % t " (al t, n Z t Z t+[ .. an Zt t+h

The relevant sequence of point processes for this problem is given by

n
I n " I C -

t1 n t

which is defined on the state space E = h+ \{(O, 0, ... , 0)) where L is the

measure assigning unit mass to the point x and zero elsewhere. In defining a
S

point process on E, we shall use the convention that if a point falls outside

the state space it does not contribute to the sum. E will denote the usual

product a-algebra on E modified so that the compact subsets of E are those

compact sets in R h+1 which are bounded away from (0, 0, ... , 0).
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It will be shown that the sequence {I } converges in distribution to a
n

Poisson process defined as follows: Let C .(l), c 2) . (h)
k-i k k i kl k

be h iid Poisson process on IR{O} with intensity measure given by X(dx) = S

apX -a - 1 I (x)dx + a"' (-x)- - 1 I O" (-)dx where p = + (l-p)2 and
(0, q )

q , 1 - p. Further let C also be a Poisson process on R\{O) independent
k-l k

of the h Poisson processes above with intensity )(dx) =px -a- I 1 )(x)dx +
(0,

ctq(-x)- - I 1 0)(x)dx. The limit point process is then

h
1= I C (j)k-I i-O Jk "ei

weee h+1 th

where hIR is the basis element with i component equal to one and the

rest zero. In other words, the points of I are located on the coordinate axes,

the points Q (i ) , k - 1, 2, ...) lying on the axis determined by i

In order to establish I * I it is convenient to first specify a class ofn

sets (as in Section 2 of Davis and Resnick, 1984) which generate E. Let S be

the collection of all sets B of the form

B - (boc co x (b , c ] x ... x (b, ch]

which are bounded away from (0, 0, ... , 0) and b < ci, b 1 0, ci 1 0 for

i - 0, 1, ..., h. It is clear that S is a DC-semiring (cf. Kallenberg, 1976,

p. 3). Moreover, since B c S is bounded away from zero, either

(Cl) B ({yti: y e I - for i - 0, ... , h

or

(C2) B 1){yei: y £ c - (b, P i j

$ i j.

That is, B has either e-.v intersection with all of the coordinate axes or

intersects exactly one in an "..terval. Note that in (C2), bi < 0 < ci for i # j
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and 0 (bj Further properties of these sets are developed in the

following proposition.

Proposition 3.1.

(1) nP(Cl c B) - 0 if B c S satisfies Cl.

(ii) nP 1 B) - )X(bo, co if B E S satisfies C2 with J 0

13 (bj, c i if B c S satisfies C2 with 0.

(iii) nPn ZcBl, 1 Z t 
c B ) 0 if BandB z  s and 1<t<1+h.

S

(iv) n2P(,a 1 e BI',e1 Zt£B2 ) c C for all n and t > 1 + hwhere

C is a constant depending only on the sets B1 and B2 in S.

Proof. (i) Setting x l boi A I1C. > 0 and y - Ibll A I1cl > 0, we have

nPe 1 ZI e B) nP(IZ1 l > ax, 1z 21 > any*)

nP (IZ1 > a) Y

+ nPZ 1 1> ax Jz z21 a y, I < aM)

From (1.2) and (3.1) we have nP(1Z 1 >aM) - as n - which can be

made arbitrarily small by choosing M large. The second term is bounded by

nP(1Zl > anx 'Iz > a n > ax a-n
n 2 a M - ln(I n 21 a Mn n

*(x) 0 = 0

since n/a Qo by (3.5).
n n

(ii) Suppose j - 0. Then, with x l 0bo A Icor, y= min (lb I A Ici1 ) > 01<i<h p

and using an elementary bound, we have

InP(,e1 l B) - nP(a bo < Z < a co)I
nn o - no

<nhP(IZ I > a.x jz1 z21 > any

S
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which goes to zero as n + by the proof in (i). Moreover, it follows from (1.2)

and (1.3) that nP(anb0 < ZI < an c ) - X(b o , c]. The argument for the case j # 0

is handled in the same manner and is omitted.

(iii) If either BI or B2 satisfies Cl, then we are done by (i). So suppose

1(1) (1) (2)1 (2)
B and B2 satisfy C2 with B1 -j (b i) c I B2 J - (b J, C j,] .

Then if j 0 0 and J' 0 0,

(3.6) nP(k:I T, c B1 , -1 Yt c B ) < nP(iZ Z+j at t+j Y

where x - l b I A Icj and y 2)bl A jc(,. Now if t 1 1 + J and

t + J' # 1 + J, then by independence

nP(1Z I n x Zt+jJ > anY p

- nP('Z I Z+j I > anx )P(IZ t Zt+j > a nY )

* 0.

On the other hand if t 1 + j or t + J' -1 + J, then we have the bound

nP(ZI Z2 1 > ax, IZ2 Z31 > aY )

< nP(IZ 2 1 > anM)

+nP(Iz 1 21 > a', 'Z2 Z3 1 > n, Z2 1 <_aM)

an  ,
< nP(IZ2  > anM) + nP(1Z 1 Z2 1 ax)p(1z 31 > y )

n,

M asn =

where we have u~ed (3.5) in the second term. Since M is arbitrary the left side

of (3.6) must have a zero limit. The other cases j - 0 or J' = 0 Pre done in a

similar way.

(iv) This follows easily from (i) and (ii) since for t > I + h the vectors

Z. and Zt are independent. Q
Proposition 3.2 Let f7 } be iid satisfying (1.2), (1.3) with 0 < a < 2 and

suppose E IZI I . If an' an are given by (3.1), (3.4) we have

I .1
n



-16-

in the sense of convergence of point processes on the space E (cf. Kallenberg,

1976).

Proof. Since the point process I is simple, it suffices to show by Theorem 4.7

in Kallenberg (1976) that

(3.7) E I (B) - E I(B) < - for all B e S

and S

(3.8) P(I n(R) - 0) - P(I(R) - 0) for all sets R which are a finite union of

disjoint sets in S.

Clearly (3.7) is automatic from (i) and (ii) of Proposition 3.1 because I 6
m

has all of its points on the coordinate axes. Now suppose R - L) B is a union
1=1

of disjoint sets in S. For a fixed positive integer k, define I[n/k](R) -E~ntk]

-1 (R) where [x] is the greatest integer < x. Using a Bonferroni-type

t-l n t

inequality, stationarity and the disjointness of the sets BJ, we have

M-1 m m [nfkJ -1 -1

I [n/kJP(,e n e B ) - I [n/k)P(e Z, c Bit je c B)
J-1 J-l t-2 n

m -1

p( tnIki(R) > 0) < I n/k3PS:I  c Ba).

It follows from above that

m -1[n/k]P(, 1  1 Z, c B " E I n/k](R) - k-E I(R)

as n -" ". Applying Proposition 3.1 (iii) and (iv), we also have

limsup [nfkJ n/kP( 1 Xl F B, t- It c B) o(1/k) as k
n- tw2 lenJ

for i, j - 1, ... m so that

p
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(3.9) 1 k I(R)< liminf P(I (R) = 0)
n-co [n/k]

* _ -1
limsup P(I /(R) = 0) < 1 - E I(R) + o(I/k)

Since the vector-valued process Y is h-dependent, a standard argument (cf. Lead-

better, Lindgren, and Rootzdn, 1983, chapters 3 and 5) gives

(3.10) P (k (R) - 0) - P(I (R) - 0) 0 as n •

for every positive integer k. Taking the kth power of (3.9) and using (3.10),

we obtain

(1 - k-IE I(R))k 4 liminf P(I(nR) = 0) < limsup P(I (R) = 0)
n-- -*

-1 k
<(I - k E IOR) + o(1/k)) .

Now letting k - =, we have P(I n(R) = 0) - eE ICR) But I is a Poisson process

so that eE I(R) P(I(R) - 0) which verifies (3.8) as desired.

Theorem 3.3. Let {Zt ) be iid satisfying (1.2) and (1.3) with 0 < a < 2 and EI

Then, if a and a are given by (3.1) and (3.4),n n

(a2  Z2, -I -1 n-(a- a (n )  .. a (zt  z h -  )
n n t1 t t+l n ' anti t Ah n

1 So, Si. Sh)

where n = EZI 2o FZ 1 Z 2  a and So$ .... S hare independent stable

random variables; S Is positive with index a/2 and S1 t S 2 ... , Sh are identically

distributed with inkeex a.

Proof. Adapting the argument used in Section 2 of Resnick (1984) and in Section 4

of Davis and Resnick (1984) (see also Resnick and Creenwood, 1978) it is easy to

show, for any 0 < 6 < 1,

-2n n
(a .. a za (ZZ 1

t=l1 t n t=l t ztij a

1 2 [a 6 z 1< I i h)

S. 1 2
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(S O, S6, S

where S6  1 (j0))2 1[a 1d( ) 10- 8 k l 1
- 1) and S' i

0- k (I 6) k-i k > 6)I

- 1 s 3 (ds) for i - 1, 2, ..., h. Clearly, S , S6, S are independent

I(0 ( (, (h)

since the points Qk(0) }  {j } k.h} are independent. The Ito representation

implies Si v Si as 6 - 0, i = 0, 1 ... , h (cf. Resnick, 1984) where the vector

(So , Si , ..., Sh ) is as described in the statement of the theorem. In view of

Billingsley (1968), Theorem 4.2, the proof is complete once we show

n(3.11) lim limsup Va 2 I-l Z2 1i~ t  <as)-o

and

(3.12) 0im limsup Var(a I Z Z l < 6 )  0, i 1, ... , h.

The expectation in (3.11) is equal to - E Z2 1 < which has te desired

a2  I whic has ti. desiren

limit by Karamata's Theorem (Feller, 1971, p. 283). Since the process

{Z t+i, t - 0, ±1, ±2, ...) is i-dependent, (3.12) holds by the comment on the

top of p. 266, Davis (1983).

Remarks.

1) If the distribution of Zt is symmetric then so is the distribution of

Zt Zt+1 in which case Vn 
= 0.

2) For 0 < a < 1, the theorem remains valid without centering the terms

Zt Zt+ i by n"
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3) In the case 1 < c<2, E Z1 Z2 - (E Z )2 exists and from Karamata's Theorem,

-2
na (E(z1 Z2)- Vn)= n an E(Z) Z2 -'1 Z Z a const. Thus, by the

convergenceof types result, Theorem 3.3 is also valid if n is replaced by

V2  1 (E Z1)2.

4. Sample correlation function of {X }

As before let {Zt} be iid satisfying (1.2) and (1.3) with 0 < a < 2,

ha
E IZ , and define

(4.1) Xt - !cjp _j zt- j

where

(4.2) 1 c ,6 j, < - with)6 1 if a > 1

10 < 6 < a if OL < 1.

We shall first concentrate on the unadjusted sample correlation function defined

by

(43) C(h) h > 0
(4.3) p(h) = -- 0'

where
n

(4.4) Cih) I Xt Xt+h .t=l

The sum in (4.4) is terminated at n rather than n - h for notational simplicity

in the followin6 arguments. All of the results in this section, however, remain

valid if the upper limit is n - h. Put 0(h) c c +h/1 c2, which in the case
J J

that Var(Z t) < -, is equal to Corr(X t, X t+h). In Davis and Resnick, 1984, Theorem 4.2

it was shown under condition (1.4) that p(h) p(h). Here, we consider the limit

distribution of o(h), suitably normalized. We begin with the following proposition

which is similar to Lemma 8.4.3 in Anderson (1971).

p4
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Proposition 4.1. Assume (4.1), (4.2) and EIZ 1 I' =-. Then for every positive

integer h,
(4.5) a a2 (p(h)-p(h)- [C(0) -  ci(CJ+h - cjp (h))Zt i z t J ) PO

ij

where an and an are given by (3.1) and (3.4), respectively.

Proof. We have

p(h) - p(h) - [(C(O)3 (C(h) - p(h)C(O))

- [C(O)f - I  ( I c i cj Zt.i Zt+hj - p(h) c i c Z t

[ Cc(0) 1 - n Ci(Cj~ - cj 0 (h))Z Z
twl i jJ c -

so that the difference in (4.5) is equal to a

~ 1a2 Ec(o)] I X (cic +- t-
n n t-l i

n2 (C(O)] a2E() 1 ~(c c2p(h)2 2

n an n I (ci i+h i hti

i t t-

a a2n MC(O)- (c i ci. - c p(h)( I z+ Uni)

n-i n
where Ui I - I Z2 is the sum of at most 21 random variables. Since

t-l-i t-i

-2a C(O) converges in distribution (Theorem 4.2 in Davis and Resnick, 1984) and
n

(ci c 1 - c2P(h)) - 0 it suffices to show
i

(4.6) lmsup E (ci Ci+h- c20(h))Un 6,2 <

6 defined in (4.2). Because 6 < a, E < , so that by the triangle inequality

and assumption (4.2), we have

p

drp
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Ell (ci Ci+h - c2p(h))U 16/2

(I C, ( c i hl 1 /2  + I cil' Ip (h) 16/2 )E! Un 
6 /2

± i nl

._ (Ici ci+hl6/2 + Jc±il 6 i(h)1 6 / 2 )(2ilEIZ 1 16)

and by the Schwartz Inequality this is bounded by

2EIZI%[ Icil&[i) ( lci~hI6il) + jp(hi 1 2(lic i l ]
i i

by assumption 4.2. Thus (4.6) follows since the bound does not depend on n.

Proposition 4.2. Assume (4.1), (4.2) and EIZ 1! - . Then

2n Go 2 -2n

(4.6) a-2 C(0)- 2_ i ) -a ci c j Z P 0.nt-l i-- n -1 ijZti Z -  "

i~j

Proof. The proof of Proposition 2.1 can be adapted to this case but a simpler

argument is given here instead. Choose 0 < 6 < a satisfying (4.2) with a < 26.

The triangle inequality gives

Elja- 2  c i c1 6Zn - i~j z jt-i z t - -1

i j

a-2 6n I Ic c218EIZ 1 Z
i,J
i#j

-26 1.)
<na2 ( !ci d) 2 (EIZl!6)2

i

26
Now since a is regularly varying with index I/a, a is regularly varying with

n n

index 26/a > 1, and hence n a-26 - 0.
n

Rearranging the terms in the sum (4.5), we have



i~i

(4.7) n z z 0

J0O t-1 I

where * j ci(c i j+h - ciijp(h)), i1 0, ±1, ±2, .. ,j - ±1, ±2,

Proposition 4.3. Assume (4.1), (4.2) and - m* ' - As n - - we have

Mi a n ( i ' Z t i Z t i j + * j z - t i J

n i
tI ± t-it~) .j

for each j > 0 and

-2 n n

and threfora 2 (C() Z )

n t- i t-i i t-1

difference in Wi becomes

n-i n n-i-i n

a 'Pi , I 7 z~ ~ - 7 Z~ z~ + a- I 4z~( Z~ t~

a~~ n iji~1Vi + q';1 i,7 W n

n-i n n-i-j n

where V ni M t ~ Z tz 1 - 7i z Zt j and W n - i z t+j -i z tj

However with 6 as chosen in (4.2) 0
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limsup Ely *iJ Vnr 6 < limsup i 6 EIV is-- n i 6 M u l~' ,i
n j n i

< 2 [ !~1,ij!6i! z1 llz 2l1

whence a i, Vni P 0. The same argument also gives a-1 0n ij V~in i i,-j wn,i*

which proves (i).

(ii) The above argument also works in this case but with 6 replaced by

6/2. The last statement follows from Proposition 4.2.
Go

Theorem 4.4. Suppose Xt = L cj Zt j where fc I satisfies (4.2) and {Z }

satisfies (1.2), (1.3) and = w, 0 < a < 2. If a and a are given by
n n p

(3.1) and (3.4), then. for any positive integer Z,

(4.8) (a a-((h) -(h) - dh/C(0)), 1 < h < it) * (Y , Y2 Y )

n n h,n ' 1 2P

in J R, where dh,n -- (p(h+j) + p(h-j) - 2p(j)p(h))[ c E Z1I Z2 
1[1Z Z2 < an] ,

J--I 1 ' 2

Yh= (p(h+j) + p(h-J) - 2p(j)p(h))S./S and So , S1. S2 ... are independent

stable random variables as described in Theorem 3.3 (i.e. S is positive with0

index a/2 ane SI, S2, ... are identically distributed with index e). In addition

if either |I

(i) 0 < < or

(ii) I and the distribution of Zt is symmetric or

(iii) < < 2 and E ZI = 0
|I

then (4.8) holds with dh,n = 0, h - 1, ..., Z and a location change in the S 's,

j > 1.

Observe that since both a and a are regularly varying with index 1/a, then n

normalization a2/1 is ai.' regularly varying with index I/a. That is,n n

PI
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5

a2/1. " nl1 4 (n) for some slowly varying function

Proof. From Proposition 4.3, Theorem 3.3, and the continuous mapping theorem,

we have for any fixed positive integer m, 0
n

(4.9) (an - () 'a (Z- n)
(4.) (nz c(1 n  0<l i<t 1 i 'zt-i zt-i+j "

0cjk~m tin1 I

m .
(I c2 S, [ [(v, +
i i , -

where )n E Z1 Z2 
1[Z .2 < a The dependence of on h is temporarily

n 1 2 CI z 2  a n aJj
S

suppressed. The plan of the proof is to first show that (4.9) remains valid with

m replaced by - and then make use of Propositions 4.1 - 4.3 to derive the weak

limit of a n a2(p(h) - p(h) - d h,n/C(O)).n n "~

To establish the limit in (4.9) with m replaced by - it suffices to show

(cf. Billingsley, 1968, Theorem 4.2) that

(4.10) ln limsup P(a[ t1 (Z Z - n)1 >n-w. n I *> ~ i,j Z-it-i.# 7)

for every y > 0 and

m 00

(4.11) 1 . (*,1 + ) +jI i i+-j ) (*i,J +i,-j)SJ"i-i i

The limit in (4.11) can be checked using characteristic functions since

S11 (*+1) < -. As for (4.10), we have the bound
jal i

n
p(a: n 13 i[ ij(Z t i Z ti+j -tn)[>

n I> t- i

+ ( V z)jn > y/2)n >- tl *ij(zt-i zt-i+j [1z z- a n
n

n I'I'>- t 1 q'i'j zt-i zt-i+j t[1zt ztij nI >  )
t-i t-i+j n

-A + B.

S
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Applying Chebyshev's inequality to A gives, after some simplification, (see the

proof of Proposition 2.1),

- 2 v,2 n n

A <4y a n-- 7 1 1 'P~ I(1IPs-t.9 i'iIs--i t--i i jj'I>m Ii'>

+ s-t+i-j,j , I + I s-t+i+j',j' I + ' _t+ij+j , I )oY

where a2 = EI Z 1 2 U1  ZA change of variables in the sunmation

gives the bound
I

A <4y a.2 n I 1-n t=--O i--- I tm J "I>M

'jI (l1P+ijJ + t+i-jj' + *t+i+jv,j'1 + J*t+i-j+j Da n

and since 1 It+kjl- L l t'j I for all integers k,

a - n-2  2- n n 4( a n,

The absolute summability of the c 's ensures that all of the above sums involving

iji are finite and in particular lim 0 - 0. Thus by Karamata's

"'-2 o2
Theorem a n a2 - c/(2-ct)), we have lim limsup A = 0.

n n

With 6 as given in (4.2)

6-6 '-66

R < 26 y a n n ~ I*>j1 I 1 1 a

and again by Karamata's Theorem, n a E Z 1
n 1 2' [!Z I z2  > an CZI(c - 6)

so that lim limsup B - 0 which established (4.9) with m replaced by .

M+-
4  n4-

Now from Proposition 4.1 and (4.7), we have

a (o(h) o(b)) = a a2(C(o) 7 7i t Zt-i L - 14)
n n n n i0o f-I "
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Since (1P - p(h + j) + p(h - j) - 2o(J)p(h), we then have

an- a2(p(h) - o(h) - dh/C(O))

na-i a2 (C(t)i-j
,:n n J 0 til I t'J(Zt-i Zti 'n) + pl

It follows by applying the continuous mapping theorem to (4.9) that

--1
a a2( p(h) - p(h) - dh/C(O)) * ( j ( 4'. + ,)S/ [c2 So)

n n hn J£ i j 1'- i i1 o

- Y h^Sh"

The proof of the joint convergence in (4.8) is essentially the same as

the above argument. The only difference is that the vector in (4.9) is extended

to an X+l-dimensional vector where the (h+l)th component is given by

n (h)
an 0u<m c-I * (Zt- - - in), h - 1, 2, ...

Finally, the last statement of the theorem is an immediate consequence of
p

Remarks 1 - 3 in Section 3.

In the following two results, we consider the limit laws of the mean cor-

rected version of the sample correlation function defined by

n n
p(h) t (X - X)(X - X)/ I (Xt - )

t-1l t+h tol
n

whereX = X/n.
t-l t

Corollary 1. Suppose 1 < a < 2. Then for any positive integer £,

( , a2(P,{h) - p(h)), 1 < h - k) * (YI' Y2, "''' Y£)n n

Proof. Since the function P(h) is location invariant, we may assume without loss

of generality that E Zt - 0 (otherwise consider the process X- E Xt

c (Zt - E Zt j)). In view of Theorem 4.4, it suffices to show p

* urn i ti c-

- , . . . . . _ -
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- ~ -2 n Kn)2  -2

o(h) P (h) o (an a ). Using the identity I X 2 - I (X _ = X
p n n -= t '.i t

we have
n n

(4.12) P(h) - p(h) = (p(h)n _R2 - _ I Xt+h)/ (Xt - X) 2 .
tol t=l

n
In Section 4 of Davis and Resnick (1984), it was shown that I (X 3 E)2 = 0p(a2 ),

tl t p nt=l 1
n n

=Xt . 0p(an) o p(an) and P(h) 4 p(h). Since X- E X 1 0 and I X t+h/n EX = 0
t=l pt=l

a.s. by the ergodic theorem, this implies p(h) - o(h) = o p(a n a n) as desired.

In the 0 < a < 1 case, the sample mean plays a dominant role in determining

the limit distribution of P(h). In order to describe this result, it is necessary

to first define two random variables. Let {jk: k = 1, 2, ... be the points of

a Poisson process on mN.{0} with intensity )(dx) - ap x- - 1 (x)dx += 1~(0, =)(xd+

aq(-x) - l1 (1( 0 )(x)dx where p and q are given in (1.2). Now if 0 < a < 1, then

< - a.s. so that the random variables S I J and So I j2 are
kfl k=1 o k=l

well-defined. In particular, S and S each have a stable distribution with
0

index a and a /2 respectively.

Corollary 2. Suppose 0 < a < 1. Then for any positive integer 9

(n(O(h) - r(h)), 1 < h < t) * ((o(h) - 1), 1 < h < k)(1 ci) 2 S2 /(V c So)
i- i

Remark. Some picnerties of the distribution function of $2/S are studied in
0

Logan et al (1973). See also Cline (1983).

Proof. Let {j } be the points of a Poisson process as described above. Using an

argument similar to that given in Section 4of Davis and Resnick (1984) (see also

Resnick, 1984, Section 4) it is easy to show
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4- n
(4.13) ( aP a 2 (X R) 2)"((I ci)( 2)k c)( ))

t-1 tM1 i k-I i k-i

" ((X c )S, (X c2)So)
i0

Now rearranging the identity in (4.12), we have h

2 nX(I (Xj- Xn+j))

(4.14) n(a(h) - p(h)) -n(p(h) - p(h)) + n(p(h) -. 1)nX + i-i

S(Xt -x) I (xt -x)
t-l t-l

By Theorem 4.4 the first term is 0 p(a a- n) 0 (1) since a < 1. The thirdp n nP n n - 2 -1
term in (4.14) is also negligible because nX Op (an), ( I (Xt - X) ) =

t=l
-2 h

0 2(a n), and I (X j - Xn+j 0 (1) so that the product of the three terms is
Pnj=lP

0 (a 1) = Op(1). As for the middle term,

n- (p(h) - l)(I c i S)n (p(h) - 1)5nX i

n - ( c2)S .

t (xt - x1 
0

follows from (4.13) and the weak consistency of ;(h). Finally the joint

convergence in the statement of the corollary is clear.

We close this section with a comparison of the standard result for the

correlation function in the finite variance case and Theorem 4.4. Assuming that

Zt has a finite variance and a zero mean, Theorem 8.4.6 of Anderson (1971) gives

n ;(I) - p(1), o(2) - p(2), ... , (Z) - p(k)) -= (Vl , V2 . ., V)

where the limit vector has a multivariate normal distribution with mean zero and

covariance matrix given by Bartlett's formula

r gh (p(g+j)p(h+j) + p(g-J)p(h+j) - 2p(J)p(g)p(h+j)

- 2p(J)p(h)p(g+j) + 2p2(j)c,(g)p(h)).
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However, by checking covariances the components in the limit vector may be

written as

(4.15) Vh I (0(h+j) + p(h-J) - 2o(J)p(h))Sj, h - 1, 2, ... ,

J=l

where {S is a sequence of iid N(O, 1) random variables. This corresponds to

the numerator portion of the limit in Theorem 4.4 with a = 2. In fact, Si may

2 n

be identified as the weak limit of o-2 n-  Z t  Z t+j, j 2 1, .. Moreover,
t=]

in the finite variance case, the sample variance n-  _ I cIVar(ZI )>0
1 -

n 0
whereas an I X2 C2 s in the 0 < a < 2 case. This phenomenon accounts

for the division by S in Theorem 4.4 and not in (4.15).
o

5. Examples

In this section, we consider applications of Theorem 4.4 to some time series

models. Throughout this section, assume the hypotheses of Theorem 4.4 are met

and, for simplicity, suppose the distribution of Z is symmetric. We then have
t

(5.1) nl/a L(n)(P(h) - P(h)) , I (p(h+j) + p(j-h) - 2p(J)p(h))Sj/S0J-1

where 1(n) i3 a slowly varying function and SI, $29 ... is now an iid sequence of

symmetric a-stable random variables, independent of the positive c/2-stable

random variable So

The numerator -f the limit in (5.1) is also a symmetric a-stable random

variable with characteristic function given by

(5.2) exp - p(h+i) + p(J-h) - 2p(J)p(h)ia'tjI

Extending the notion of variance for a Gaussian random variable, Stuck (1978)

defined the dispersion or a random variable with characteristic function (5.2)

by

I.
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(5.3) disp = l p(h+j) + p(J-h) - 2p()l"
J-1

(see also Cline, 1983). The limit in (5.1) is then equal in distribution to

(disp)1 /M S1/So . Notice that upon setting a - 2 in (5.3), we get the asymptotic

variance of p(h) in the traditional finite second moment setting.

1) _MAQ). Suppose {X ) is the finite moving average

xt zt + 1 t-+ ... + q Zt-q

Then, since p(h) - 0 for Ihi > q, we have for h > q

n l/L(n)(p(h) - p(h) (1 +2 (J ) 1,3 , S /So.

2) Estimation of e in a MA(1). For the MA(1) process X - t + p(1) -

0/(1 + e2). A method of moments type estimator for e is found by solving the P

latter equation for 0. Choosing the solution with the constraint lei 1 (cf.

Fuller, 1976), gives

(1 - (1 - )(20) if 0 < jPj :s .5

e -1p <-.5

p > .5

where p p(l). Letting g(p) denote the inverse of the function 8/(1 + 02)

with lei < 1, we have by the mean value theorem

- = g(;) - R(P) = e(p)(P - 0) + o p (P - P).

Hence

n1/c I(n)(e - 0) 9 02) - 1 (1 + 82) ((1 - 2(1) + lp(i) S /So .

The dispersion of the numerator of the limit simplifies to

(1 + e"5 L + ,1011 (l + e25)1
(+ 1 - e) Again note by setting a i 2, we obtain the asymptotic

(1 -

P

..... . . . . . a . , , ,
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variance of e (cf. Fuller, 1976, p. 343).

3. AR(l). Let {X } be the AR(l) process Xt -Xt_ I + Z where [ < I. In this I
t t

case, p(h) - 4h and estimating 4 by M p(l), we have

l/- ,) ( J+ - 1/an ~) ( 0StI/S °

J=l

I -' 1/a2(- *cl)l/ct s1 1So"

4. Yule-Walker estimates. The Yule-Walker matrix equation for the AR(p)

model Xt  ... 4 D Xt, p + Zt, assuming -4,1 z - 2 Z2 ... 0
p

1 < 1, is

(5.4) R

n
where R is the p x p matrix [p(i - J)]J ()

and (p(l), ... p(p))'. The Yule-Walker estimate of is then defined as
n

the solution of (5.4) with R and k replaced by R - [p(i - J)] and
i,j-l

(p(1), ..., p(p))', respectively. As in Yohai and Maronna (1977), for
n

zIRp define 4P(z) - R(Z)-Iz where R(Z) - [zli_jl] and z 1. Sincei,J-l 0

R- R and R is non-singular, this implies i(^) is well defined for large n.

The mean vclue theorem then gives

where D i .he p x p matrix of partial derivatives of 1 evaLuated at . Consequently,

n ~ L) (n) (k

where = (Y' 92' . Y )' with Yh = (p(hJ) 4 p(h-J) - 20(j)0(h))S /S
j=l 

0

h-l , ..., p.

I--
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